PATHOLOGY

MD3

PATHOLOGY

Fundamentals of Learning Objectives Define the Etiology, pathogenesis, morphology, and clinical Pathology significance of disease

□ List techniques for staining pathologic specimens

OVERVIEW OF PATHOLOGY

Definitions

• The study of the essential nature of disease, including symptoms/signs, pathogenesis, complications, and morphologic consequences such as structural and functional alterations in cells, tissues, and organs

• The study of all aspects of the disease process focusing on the pathogenesis leading to classical structural changes (gross and histopathology) an molecular alterations The **Etiology** (cause) of a disease may be genetic or environmental. The **pathogenesis** of a disease defines the temporal sequence and the patterns of cellular injury that lead to disease. **Morphologic** changes of the disease process include both gross changes and microscopic changes. The **clinical significance** of disease relates to its signs and symptoms, disease course including complications and prognosis.

Methods Used

• Gross examination of organs on exam questions has 2 major components: identifying the organ and identifying the pathology. Useful gross features include consideration of size, shape, consistency, and color.

Microscopic examination of tissue

• In light microscopic examination of tissue, haematoxylin and eosin (H&E) is considered the gold standard stain and is used routinely in the initial microscopic examination of pathologic specimens.

• The common denominator of the features is that haematoxylin binds nucleic acids and calcium salts, while eosin stains most proteins (both extracellular and intracellular).

Hematoxylin

- Stains blue to purple
- Nuclei
- Nucleoli
- Bacteria
- Calcium
- Thyroid colloid

Eosin Stains pink to red Cytoplasm Collagen Fibrin RBCs

Eosin Stain

Eosin stain on slide

Eosin stain on adipose cells

Other histochemical stains (chemical reactions):

Prussian blue (stains iron),

Congo red (stains amyloid),

Acid fast (Ziehl-Neelsen, Fite) (stains acid-fast bacilli),

Periodic acid-Schiff (PAS, stains high carbohydrate content molecules),

Gram stain (stains bacteria),

Trichrome (stains cells and connective tissue),

Reticulin (stains collagen type III molecules).

Congo red

Congo red stain

Immunohistochemical (antibody) stains include

Cytokeratin (stains epithelial cells),

Vimentin (stains cells of mesenchymal origin except the 3 muscle types; stains many sarcomas),

Desmin (stains smooth, cardiac, and skeletal myosin),

Prostate specific antigen, and many others.

Cytokeratin

Cytokeratins are keratin proteins found in the intracytoplasmic cytoskeleton of epithelial tissue. They are an important component of intermediate filaments, which help cells resist mechanical stress.

Vimentin

Vimentin is a type III intermediate filament (IF) protein that is expressed in mesenchymal cells. IF proteins are found in all animal cells as well as bacteria. IF, along with tubulin-based microtubules and actin-based microfilaments, comprises the cytoskeleton

Prussian blue

Prussian Blue

- Ancillary techniques include immunofluorescence microscopy (IFM), typically used for renal and autoimmune disease, and transmission electron microscopy (EM), used for renal disease, neoplasms, infections, and genetic disorders.
- Molecular techniques include protein electrophoresis, Southern and Western blots, polymerase chain reaction (PCR), and cytogenetic analysis (karyotyping, in situ hybridization studies).

Immunofluroscent Microscopy

